Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(2): e202313714, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37988191

RESUMO

An unprecedented regiodivergent palladium-catalyzed carbonylation of aromatic alkenes has been developed. Utilizing commercially available Pd(CH3 CN)2 Cl2 in the presence of 1,1'-ferrocenediyl-bis(tert-butyl(pyridin-2-yl)phosphine) ligand L8 diverse selenoesters are obtained in a straightforward manner. Key to success for the control of the regioselectivity of the carbonylation step is the concentration of the acidic co-catalyst. This general protocol features wide functional group compatibility and good regioselectivity. Mechanistic studies suggest that the presence of stoichiometric amounts of acid changes the properties and coordination mode of the ligand leading to reversed regioselectivity.

2.
Chem Sci ; 14(7): 1732-1741, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819859

RESUMO

A simple, efficient, and convenient activation of perfluoroalkyl iodides by tBuONa or KOH, without expensive photo- or transition metal catalysts, allows the promotion of versatile α-sp3 C-H amidation reactions of alkyl ethers and benzylic hydrocarbons, C-H iodination of heteroaryl compounds, and perfluoroalkylations of electron-rich π bonds. Mechanistic studies show that these novel protocols are based on the halogen bond interaction between perfluoroalkyl iodides and tBuONa or KOH, which promote homolysis of perfluoroalkyl iodides under mild conditions.

3.
Chemistry ; 29(8): e202203342, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342300

RESUMO

The first rhodium-catalyzed formylation of non-activated alkyl chlorides with syn gas (H2 /CO) allows to produce aldehydes in high yields (25 examples). A catalyst optimization study revealed Rh(acac)(CO)2 in the presence of 1,3-bisdiphenylphosphinopropane (DPPP) as the most active catalyst system for this transformation. Key for the success of the reaction is the addition of sodium iodide (NaI) to the reaction system, which leads to the formation of activated alkyl iodides as intermediates. Depending on the reaction conditions, either the linear or branched aldehydes can be preferentially obtained, which is explained by a different mechanism.

4.
Angew Chem Int Ed Engl ; 62(6): e202214706, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468459

RESUMO

Diesters are of fundamental importance in the chemical industry and are used for many applications, e.g. as plasticizers, surfactants, emulsifiers, and lubricants. Herein, we present a straightforward and efficient method for the selective synthesis of diesters via palladium-catalyzed direct carbonylation of di- or polyols with readily available alkenes. Key-to-success is the use of a specific palladium catalyst with the "built-in-base" ligand L16 providing esterification of all alcohols and a high n/iso ratio. The synthesized diesters were evaluated as potential plasticizers in PVC films by measuring the glass transition temperature (Tg ) via differential scanning calorimetry (DSC).

5.
Chem Sci ; 13(45): 13459-13465, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507181

RESUMO

A general rhodium-catalyzed selective carbonylative coupling of unactivated alkyl chlorides with aliphatic alcohols or phenols to the corresponding esters is presented for the first time. Crucial for this transformation is the addition of sodium iodide, which provides in situ more active alkyl iodides. In the presence of a Rh(i)-DPPP catalyst system diverse esters (81 examples) including industrially relevant acetates from chloro- and dichloromethane can be prepared in a straightforward manner in up to 95% isolated yield. The used ligand not only affects the selectivity of the carbonylation reaction but also controls the selectivity of the preceding halide exchange step.

6.
Nat Commun ; 13(1): 4432, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908063

RESUMO

The rise of CO2 in atmosphere is considered as the major reason for global warming. Therefore, CO2 utilization has attracted more and more attention. Among those, using CO2 as C1-feedstock for the chemical industry provides a solution. Here we show a two-step cascade process to perform catalytic carbonylations of olefins, alkynes, and aryl halides utilizing CO2 and H2. For the first step, a novel heterogeneous copper 10Cu@SiO2-PHM catalyst exhibits high selectivity (≥98%) and decent conversion (27%) in generating CO from reducing CO2 with H2. The generated CO is directly utilized without further purification in industrially important carbonylation reactions: hydroformylation, alkoxycarbonylation, and aminocarbonylation. Notably, various aldehydes, (unsaturated) esters and amides are obtained in high yields and chemo-/regio-selectivities at low temperature under ambient pressure. Our approach is of interest for continuous syntheses in drug discovery and organic synthesis to produce building blocks on reasonable scale utilizing CO2.

7.
Chem Sci ; 13(23): 6865-6872, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774164

RESUMO

A metal-free oxidative dehydrogenation of N-heterocycles utilizing a nitrogen/phosphorus co-doped porous carbon (NPCH) catalyst is reported. The optimal material is robust against traditional poisoning agents and shows high antioxidant resistance. It exhibits good catalytic performance for the synthesis of various quinoline, indole, isoquinoline, and quinoxaline 'on-water' under air atmosphere. The active sites in the NPCH catalyst are proposed to be phosphorus and nitrogen centers within the porous carbon network.

8.
JACS Au ; 2(3): 731-744, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35373201

RESUMO

Construction of higher C≥2 compounds from CO2 constitutes an attractive transformation inspired by nature's strategy to build carbohydrates. However, controlled C-C bond formation from carbon dioxide using environmentally benign reductants remains a major challenge. In this respect, reductive dimerization of CO2 to oxalate represents an important model reaction enabling investigations on the mechanism of this simplest CO2 coupling reaction. Herein, we present common pitfalls encountered in CO2 reduction, especially its reductive coupling, based on established protocols for the conversion of CO2 into oxalate. Moreover, we provide an example to systematically assess these reactions. Based on our work, we highlight the importance of utilizing suitable orthogonal analytical methods and raise awareness of oxidative reactions that can likewise result in the formation of oxalate without incorporation of CO2. These results allow for the determination of key parameters, which can be used for tailoring of prospective catalytic systems and will promote the advancement of the entire field.

9.
Nat Commun ; 13(1): 1848, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387970

RESUMO

Zeolitic imidazolate frameworks derived Fe1-N-C catalysts with isolated single iron atoms have been synthesized and applied for selective ammoxidation reactions. For the preparation of the different Fe-based materials, benzylamine as an additive proved to be essential to tune the morphology and size of ZIFs resulting in uniform and smaller particles, which allow stable atomically dispersed Fe-N4 active sites. The optimal catalyst Fe1-N-C achieves an efficient synthesis of various aryl, heterocyclic, allylic, and aliphatic nitriles from alcohols in water under very mild conditions. With its chemoselectivity, recyclability, high efficiency under mild conditions this new system complements the toolbox of catalysts for nitrile synthesis, which are important intermediates with many applications in life sciences and industry.

10.
Chem Rev ; 122(6): 6634-6718, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35179363

RESUMO

Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.


Assuntos
Hidrogênio , Deutério/química , Marcação por Isótopo/métodos , Espectrometria de Massas , Trítio/química
11.
Chemistry ; 28(11): e202103903, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019180

RESUMO

A phosphine-oxide-promoted, cobalt-catalysed reductive etherification using syngas as a reductant is reported. This novel methodology was successfully used to prepare a broad range of unsymmetrical ethers from various aldehydes and alcohols containing diverse functional groups, and was scaled-up to multigram scale under comparably mild conditions. Mechanistic experiments support an acetalization-hydrogenation sequence.

12.
Chimia (Aarau) ; 75(11): 923-935, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34798914

RESUMO

Fluoroalkylations have received increasing attention in the academic and industrial environment due to the particular properties of the active ingredients that are strongly influenced by fluoroalkyl substituents. The inherent difficulties of introducing a fluoroalkyl substituent into advanced intermediates has triggered the development of an enormous number of specialized reagents, which, however, are often not suitable for large scale applications. In contrast to this reagent based fluoroalkylation approach, the direct activation of industrially readily available fluoroalkyl halides could be more suitable for a large-scale process. In this way the dithionite initiated fluoroalkylation as well as newly developed catalytically activated fluoroalkylation protocols were considered for industrial large-scale applications.


Assuntos
Indicadores e Reagentes
13.
Chem Sci ; 12(31): 10467-10473, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34447539

RESUMO

ß-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics. Here, we report a novel one-step approach for the synthesis of α-(trifluoromethyl)-ß-lactams and related products from fluorinated olefins, anilines and CO. Utilization of an advanced palladium catalyst system with the Ruphos ligand allows for selective cycloaminocarbonylations to give diverse fluorinated ß-lactams in high yields.

14.
Chemistry ; 27(38): 9720, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34137083

RESUMO

Invited for the cover of this issue are Helfried Neumann, Matthias Beller and co-workers at the Leibniz-Institut für Katalyse e. V., Rostock and Hangzhou Normal University. The image depicts "the case of ketone deuteration" being solved by Sherlock Holmes. Read the full text of the article at 10.1002/chem.202100468.

15.
Nat Commun ; 12(1): 3257, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059673

RESUMO

The selective synthesis of fluorinated organic molecules continues to be of major importance for the development of bioactive compounds (agrochemicals and pharmaceuticals) as well as unique materials. Among the established synthetic toolbox for incorporation of fluorine-containing units, efficient and general reagents for introducing -CF2- groups have been largely neglected. Here, we present the synthesis of 3,3-difluoropropen-1-yl ammonium salts (DFPAs) as stable, and scalable gem-difluoromethylation reagents, which allow for the direct reaction with a wide range of fascinating nucleophiles. DFPAs smoothly react with N-, O-, S-, Se-, and C-nucleophiles under mild conditions without necessity of metal catalysts with exclusive regioselectivity. In this way, the presented reagents also permit the straightforward preparation of many analogues of existing pharmaceuticals.

16.
Chemistry ; 27(38): 9768-9773, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844338

RESUMO

A novel ruthenium-catalyzed C-H activation methodology for hydrogen isotope exchange of aromatic carbonyl compounds is presented. In the presence of catalytic amounts of specific amine additives, a transient directing group is formed in situ, which directs selective deuteration. A high degree of deuteration is achieved for α-carbonyl and aromatic ortho-positions. In addition, appropriate choice of conditions allows for exclusive labeling of the α-carbonyl position while a procedure for the preparation of merely ortho-deuterated compounds is also reported. This methodology proceeds with good functional group tolerance and can be also applied for deuteration of pharmaceutical drugs. Mechanistic studies reveal a kinetic isotope effect of 2.2, showing that the C-H activation is likely the rate-determining step of the catalytic cycle. Using deuterium oxide as a cheap and convenient source of deuterium, the methodology presents a cost-efficient alternative to state-of-the-art iridium-catalyzed procedures.


Assuntos
Rutênio , Aminas , Catálise , Hidrogênio , Irídio
17.
Angew Chem Int Ed Engl ; 60(17): 9527-9533, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33448531

RESUMO

The dicarbonylation of 1,3-butadiene to adipic acid derivatives offers the potential for a more cost-efficient and environmentally benign industrial process. However, the complex reaction network of regioisomeric carbonylation and isomerization pathways, make a selective and direct transformation particularly difficult. Here, we report surprising solvent effects on this palladium-catalysed process in the presence of 1,2-bis-di-tert-butylphosphin-oxylene (dtbpx) ligands, which allow adipate diester formation from 1,3-butadiene, carbon monoxide, and methanol with 97 % selectivity and 100 % atom-economy under scalable conditions. Under optimal conditions a variety of di- and triesters from 1,2- and 1,3-dienes can be obtained in good to excellent yields.

18.
Chem Commun (Camb) ; 57(9): 1137-1140, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33410833

RESUMO

A novel manganese-catalyzed C-H activation methodology for selective hydrogen isotope exchange of benzaldehydes is presented. Using D2O as a cheap and convenient source of deuterium, the reaction proceeds with excellent functional group tolerance. High ortho-selectivity is achieved in the presence of catalytic amounts of specific amines, which in situ form a transient directing group.

19.
Chem Commun (Camb) ; 56(96): 15157-15160, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33210679

RESUMO

Mild and selective nickel-catalyzed trifluoromethylation and perfluoroalkylation reactions of alkenes were developed to provide fluorinated olefins, including natural products, pharmaceuticals, and variety of synthetic building blocks in good to excellent yields (38 examples). Control experiments, kinetic measurements and in situ EPR studies reveal the importance of radical species and the formation of 1,2-adducts as intermediates.

20.
Nat Commun ; 11(1): 5383, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097719

RESUMO

There is a continuous need for designing new and improved synthetic methods aiming at minimizing reaction steps while increasing molecular complexity. In this respect, catalytic, one-pot cascade methodologies constitute an ideal tool for the construction of complex molecules with high chemo-, regio-, and stereoselectivity. Herein, we describe two general and efficient cascade procedures for the synthesis of spiro-fused heterocylces. This transformation combines selective nucleophilic substitution (SN2'), palladium-catalyzed Heck and C-H activation reactions in a cascade manner. The use of allylic ammonium salts and specific Pd catalysts are key to the success of the transformations. The synthetic utility of these methodologies is showcased by the preparation of 48 spiro-fused dihydrobenzofuranes and indolines including a variety of fluorinated derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...